Anti-Forensics
Browser or System Proxy Configuration
Clear Browser Artifacts
Clear Command History
Clear Operating System Logs
Decrease Privileges
Delete User Account
Deletion of Volume Shadow Copy
Disk Wiping
File Deletion
File Encryption
Hide Artifacts
Log Tampering
Modify Windows Registry
Physical Destruction of Storage Media
Physical Removal of Disk Storage
Steganography
System Shutdown
Timestomping
Tripwires
Uninstalling Software
Virtualization
Windows System Time Modification
- ID: AF023
- Created: 23rd June 2025
- Updated: 23rd June 2025
- Contributors: David Larsen, James Weston,
Browser or System Proxy Configuration
A subject configures either their web browser or operating system to route HTTP and HTTPS traffic through a manually defined outbound proxy server. This action enables them to redirect web activity through an external node, effectively masking the true destination of network traffic and undermining key layers of enterprise monitoring and control.
By placing a proxy between their endpoint and the internet, the subject can obscure final destinations, bypass domain-based filtering, evade SSL inspection, and suppress logging artifacts that would otherwise be available to investigative teams. This behavior, when unsanctioned, is a hallmark of anti-forensic preparation—often signaling an intent to conceal exfiltration, contact unmonitored services, or test visibility boundaries.
While proxies are sometimes used for legitimate troubleshooting, research, or sandboxing purposes, their use outside approved configurations or infrastructure should be treated as an investigatory lead.
Technical Method
Both browsers and operating systems offer mechanisms to define proxy behavior. These configurations typically involve:
- Declaring a proxy server IP address or hostname (e.g.,
198.51.100.7
) - Assigning a port (e.g.,
8080
,3128
) - Specifying bypass rules for local or internal traffic (e.g.,
localhost
,*.corp
)
Once defined, the behavior is as follows:
- Outbound Traffic Routing: All HTTP and HTTPS traffic is redirected through the proxy server, often using tunneling methods (e.g., HTTP
CONNECT
). - DNS Resolution Shift: The proxy, not the local device, resolves domain names—bypassing internal DNS logging and threat intelligence correlation.
- Destination Obfuscation: To enterprise firewalls, CASBs, and Secure Web Gateways, the endpoint appears to connect only to the proxy—not to actual external services.
- Encrypted Traffic Concealment: If the proxy does not participate in the organization’s SSL inspection chain, encrypted traffic remains opaque and unlogged.
- System-Level Impact: When configured at the OS level, the proxy may affect all applications—not just browsers—expanding the anti-forensic footprint to tools such as command-line utilities, development environments, or exfiltration scripts.
Proxy settings may be configured through user interfaces, system preferences, environment variables, or policy files—none of which necessarily require administrative privileges unless endpoint controls are in place.
This technique is especially potent in organizations with reliance on DNS logs, web filtering, or SSL interception as primary visibility mechanisms. It fractures investigative fidelity and should be escalated when observed in unauthorized contexts.
Prevention
ID | Name | Description |
---|---|---|
PV060 | Disable Proxy Configuration on Windows Systems | Disable proxy configuration changes on Windows via Group Policy. This prevents users from manually altering proxy settings in Internet Explorer/Edge and applies to system-wide proxy use (affecting Chrome and other apps that rely on WinINET settings).
Group Policy sets the following registry key:
This disables UI access to change proxy settings in the Internet Options panel and applies across applications using WinINET.
Policy Enforcement Notes:
Supported Versions:
Notes on Support:
|
PV029 | Enterprise-Managed Web Browsers | An enterprise-managed browser is a web browser controlled by an organization to enforce security policies, manage employee access, and ensure compliance. It allows IT administrators to monitor and restrict browsing activities, apply security updates, and integrate with other enterprise tools for a secure browsing environment. |
PV032 | Next-Generation Firewalls | Next-generation firewall (NGFW) network appliances and services provide the ability to control network traffic based on rules. These firewalls provide basic firewall functionality, such as simple packet filtering based on static rules and track the state of network connections. They can also provide the ability to control network traffic based on Application Layer rules, among other advanced features to control network traffic.
A example of simple functionality would be blocking network traffic to or from a specific IP address, or all network traffic to a specific port number. An example of more advanced functionality would be blocking all network traffic that appears to be SSH or FTP traffic to any port on any IP address. |
PV002 | Restrict Access to Administrative Privileges | The Principle of Least Privilege should be enforced, and period reviews of permissions conducted to ensure that accounts have the minimum level of access required to complete duties as per their role. |
PV057 | Structured Request Channels for Operational Needs | Establish and maintain formal, well-communicated pathways for personnel to request resources, report deficiencies, or propose operational improvements. By providing structured mechanisms to meet legitimate needs, organizations reduce the likelihood that subjects will bypass policy controls through opportunistic or unauthorized actions.
Implementation Approaches
Operational Principles
|
Detection
ID | Name | Description |
---|---|---|
DT046 | Agent Capable of Endpoint Detection and Response | An agent capable of Endpoint Detection and Response (EDR) is a software agent installed on organization endpoints (such as laptops and servers) that (at a minimum) records the Operating System, application, and network activity on an endpoint.
Typically EDR operates in an agent/server model, where agents automatically send logs to a server, where the server correlates those logs based on a rule set. This rule set is then used to surface potential security-related events, that can then be analyzed.
An EDR agent typically also has some form of remote shell capability, where a user of the EDR platform can gain a remote shell session on a target endpoint, for incident response purposes. An EDR agent will typically have the ability to remotely isolate an endpoint, where all network activity is blocked on the target endpoint (other than the network activity required for the EDR platform to operate). |
DT045 | Agent Capable of User Activity Monitoring | An agent capable of User Activity Monitoring (UAM) is a software agent installed on organization endpoints (such as laptops); typically, User Activity Monitoring agents are only deployed on endpoints where a human user Is expected to conduct the activity.
The User Activity Monitoring agent will typically record Operating System, application, and network activity occurring on an endpoint, with a focus on activity that is or can be conducted by a human user. The purpose of this monitoring is to identify undesirable and/or malicious activity being conducted by a human user (in this context, an Insider Threat).
Typical User Activity Monitoring platforms operate in an agent/server model where activity logs are sent to a server for automatic correlation against a rule set. This rule set is used to surface activity that may represent Insider Threat related activity such as capturing screenshots, copying data, compressing files or installing risky software.
Other platforms providing related functionality are frequently referred to as User Behaviour Analytics (UBA) platforms. |
DT047 | Agent Capable of User Behaviour Analytics | An agent capable of User Behaviour Analytics (UBA) is a software agent installed on organizational endpoints (such as laptops). Typically, User Activity Monitoring agents are only deployed on endpoints where a human user is expected to conduct the activity.
The User Behaviour Analytics agent will typically record Operating System, application, and network activity occurring on an endpoint, focusing on activity that is or can be conducted by a human user. Typically, User Behaviour Analytics platforms operate in an agent/server model where activity logs are sent to a server for automatic analysis. In the case of User Behaviour Analytics, this analysis will typically be conducted against a baseline that has previously been established.
A User Behaviour Analytic platform will typically conduct a period of ‘baselining’ when the platform is first installed. This baselining period establishes the normal behavior parameters for an organization’s users, which are used to train a Machine Learning (ML) model. This ML model can then be later used to automatically identify activity that is predicted to be an anomaly, which is hoped to surface user behavior that is undesirable, risky, or malicious.
Other platforms providing related functionality are frequently referred to as User Activity Monitoring (UAM) platforms. |
DT019 | Chrome Browser History | Google's Chrome browser stores the history of accessed websites and files downloaded.
On Windows, this information is stored in the following location:
On macOS:
On Linux:
Where This database file can be opened in software such as DB Browser For SQLite. The ‘downloads’ and ‘urls’ tables are of immediate interest to understand recent activity within Chrome. |
DT018 | Edge Browser History | Microsoft's Edge browser stores the history of accessed websites and files downloaded.
On Windows, this information is stored in the following location:
On macOS:
On Linux:
Where This database file can be opened in software such as DB Browser For SQLite. The ‘downloads’ and ‘urls’ tables are of immediate interest to understand recent activity within Chrome. |
DT017 | Firefox Browser History | Mozilla's Firefox browser stores the history of accessed websites.
On Windows, this information is stored in the following location:
On macOS:
On Linux:
In this location two database files are relevant, These database files can be opened in software such as DB Browser For SQLite. |
DT098 | NetFlow Analysis | Analyze network flow data (NetFlow) to identify unusual communication patterns and potential tunneling activities. Flow data offers insights into the volume, direction, and nature of traffic.
NetFlow, a protocol developed by Cisco, captures and records metadata about network flows—such as source and destination IP addresses, ports, and the amount of data transferred.
Various network appliances support NetFlow, including Next-Generation Firewalls (NGFWs), network routers and switches, and dedicated NetFlow collectors. |
DT102 | User and Entity Behavior Analytics (UEBA) | Deploy User and Entity Behavior Analytics (UEBA) solutions designed for cloud environments to monitor and analyze the behavior of users, applications, network devices, servers, and other non-human resources. UEBA systems track normal behavior patterns and detect anomalies that could indicate potential insider events. For instance, they can identify when a user or entity is downloading unusually large volumes of data, accessing an excessive number of resources, or engaging in data transfers that deviate from their usual behavior. |
DT101 | User Behavior Analytics (UBA) | Implement User Behavior Analytics (UBA) tools to continuously monitor and analyze user (human) activities, detecting anomalies that may signal security risks. UBA can track and flag unusual behavior, such as excessive data downloads, accessing a higher-than-usual number of resources, or large-scale transfers inconsistent with a user’s typical patterns. UBA can also provide real-time alerts when users engage in behavior that deviates from established baselines, such as accessing sensitive data during off-hours or from unfamiliar locations. By identifying such anomalies, UBA enhances the detection of insider events. |