ITM is an open framework - Submit your contributions now.

Insider Threat Matrix™

Browser or System Proxy Configuration

A subject configures either their web browser or operating system to route HTTP and HTTPS traffic through a manually defined outbound proxy server. This action enables them to redirect web activity through an external node, effectively masking the true destination of network traffic and undermining key layers of enterprise monitoring and control.

 

By placing a proxy between their endpoint and the internet, the subject can obscure final destinations, bypass domain-based filtering, evade SSL inspection, and suppress logging artifacts that would otherwise be available to investigative teams. This behavior, when unsanctioned, is a hallmark of anti-forensic preparation—often signaling an intent to conceal exfiltration, contact unmonitored services, or test visibility boundaries.

While proxies are sometimes used for legitimate troubleshooting, research, or sandboxing purposes, their use outside approved configurations or infrastructure should be treated as an investigatory lead.

 

Technical Method

Both browsers and operating systems offer mechanisms to define proxy behavior. These configurations typically involve:

  • Declaring a proxy server IP address or hostname (e.g., 198.51.100.7)
  • Assigning a port (e.g., 8080, 3128)
  • Specifying bypass rules for local or internal traffic (e.g., localhost, *.corp)

 

Once defined, the behavior is as follows:

 

  • Outbound Traffic Routing: All HTTP and HTTPS traffic is redirected through the proxy server, often using tunneling methods (e.g., HTTP CONNECT).
  • DNS Resolution Shift: The proxy, not the local device, resolves domain names—bypassing internal DNS logging and threat intelligence correlation.
  • Destination Obfuscation: To enterprise firewalls, CASBs, and Secure Web Gateways, the endpoint appears to connect only to the proxy—not to actual external services.
  • Encrypted Traffic Concealment: If the proxy does not participate in the organization’s SSL inspection chain, encrypted traffic remains opaque and unlogged.
  • System-Level Impact: When configured at the OS level, the proxy may affect all applications—not just browsers—expanding the anti-forensic footprint to tools such as command-line utilities, development environments, or exfiltration scripts.

 

Proxy settings may be configured through user interfaces, system preferences, environment variables, or policy files—none of which necessarily require administrative privileges unless endpoint controls are in place.

 

This technique is especially potent in organizations with reliance on DNS logs, web filtering, or SSL interception as primary visibility mechanisms. It fractures investigative fidelity and should be escalated when observed in unauthorized contexts.

Prevention

ID Name Description
PV060Disable Proxy Configuration on Windows Systems

Disable proxy configuration changes on Windows via Group Policy. This prevents users from manually altering proxy settings in Internet Explorer/Edge and applies to system-wide proxy use (affecting Chrome and other apps that rely on WinINET settings).

 

Group Policy sets the following registry key:

 

[HKEY_CURRENT_USER\Software\Policies\Microsoft\Internet Explorer\Control Panel] "Proxy"=dword:00000001 

 

This disables UI access to change proxy settings in the Internet Options panel and applies across applications using WinINET.

 

Policy Enforcement Notes:

  • This policy applies per-user. Use loopback processing or enforce via user GPO linked to OUs if applying domain-wide.
  • Chrome and Edge Chromium both honor system proxy settings unless explicitly overridden by command-line flags or extension policies.
  • If managing via Intune or MDM, use the Policy CSP - Proxy or custom ADMX ingestion for equivalent enforcement.

 

Supported Versions:

  • Windows 10 (all editions that support Group Policy, typically Pro, Enterprise, and Education)
  • Windows 11 (same Group Policy-capable editions)
  • Windows 8.1 / 8
  • Windows 7
  • Windows Server 2008 R2 through 2022 (when user policies apply)

 

Notes on Support:

  • This setting applies only to versions that still use WinINET-based Internet Settings (i.e., Internet Explorer settings that are system-wide).
  • It does not prevent proxy changes via third-party tools that bypass WinINET unless additional controls are enforced (e.g., application whitelisting, restricted registry access).
  • Edge (Chromium) and Chrome will respect these proxy settings if they’re not configured independently (e.g., via extension or policy override).
  • On Windows Home editions, this registry key may not take effect unless equivalent settings are configured via other methods, as Group Policy-based enforcement is not fully supported.
PV029Enterprise-Managed Web Browsers

An enterprise-managed browser is a web browser controlled by an organization to enforce security policies, manage employee access, and ensure compliance. It allows IT administrators to monitor and restrict browsing activities, apply security updates, and integrate with other enterprise tools for a secure browsing environment.

PV032Next-Generation Firewalls

Next-generation firewall (NGFW) network appliances and services provide the ability to control network traffic based on rules. These firewalls provide basic firewall functionality, such as simple packet filtering based on static rules and track the state of network connections. They can also provide the ability to control network traffic based on Application Layer rules, among other advanced features to control network traffic.

 

A example of simple functionality would be blocking network traffic to or from a specific IP address, or all network traffic to a specific port number. An example of more advanced functionality would be blocking all network traffic that appears to be SSH or FTP traffic to any port on any IP address.

PV002Restrict Access to Administrative Privileges

The Principle of Least Privilege should be enforced, and period reviews of permissions conducted to ensure that accounts have the minimum level of access required to complete duties as per their role.

PV057Structured Request Channels for Operational Needs

Establish and maintain formal, well-communicated pathways for personnel to request resources, report deficiencies, or propose operational improvements. By providing structured mechanisms to meet legitimate needs, organizations reduce the likelihood that subjects will bypass policy controls through opportunistic or unauthorized actions.

 

Implementation Approaches

  • Create clear, accessible request processes for technology needs, system enhancements, and operational support requirements.
  • Ensure personnel understand how to escalate unmet needs when standard processes are insufficient, including rapid escalation pathways for operational environments.
  • Maintain service-level agreements (SLAs) or expected response times to requests, ensuring perceived barriers or delays do not incentivize unofficial action.
  • Integrate feedback mechanisms that allow users to suggest improvements or report resource shortfalls anonymously or through designated representatives.
  • Publicize successful examples where formal channels resulted in legitimate needs being met, reinforcing the effectiveness and trustworthiness of the system.

 

Operational Principles

  • Responsiveness: Requests must be acknowledged and processed promptly to prevent frustration and informal workarounds.
  • Transparency: Personnel should be informed about request status and outcomes to maintain trust in the process.
  • Accountability: Ownership for handling requests must be clearly assigned to responsible teams or individuals.
  • Cultural Integration: Leaders and supervisors should reinforce the use of formal channels and discourage unsanctioned self-remediation efforts.

 

Detection

ID Name Description
DT046Agent Capable of Endpoint Detection and Response

An agent capable of Endpoint Detection and Response (EDR) is a software agent installed on organization endpoints (such as laptops and servers) that (at a minimum) records the Operating System, application, and network activity on an endpoint.

 

Typically EDR operates in an agent/server model, where agents automatically send logs to a server, where the server correlates those logs based on a rule set. This rule set is then used to surface potential security-related events, that can then be analyzed.

 

An EDR agent typically also has some form of remote shell capability, where a user of the EDR platform can gain a remote shell session on a target endpoint, for incident response purposes. An EDR agent will typically have the ability to remotely isolate an endpoint, where all network activity is blocked on the target endpoint (other than the network activity required for the EDR platform to operate).

DT045Agent Capable of User Activity Monitoring

An agent capable of User Activity Monitoring (UAM) is a software agent installed on organization endpoints (such as laptops); typically, User Activity Monitoring agents are only deployed on endpoints where a human user Is expected to conduct the activity.

 

The User Activity Monitoring agent will typically record Operating System, application, and network activity occurring on an endpoint, with a focus on activity that is or can be conducted by a human user. The purpose of this monitoring is to identify undesirable and/or malicious activity being conducted by a human user (in this context, an Insider Threat).

 

Typical User Activity Monitoring platforms operate in an agent/server model where activity logs are sent to a server for automatic correlation against a rule set. This rule set is used to surface activity that may represent Insider Threat related activity such as capturing screenshots, copying data, compressing files or installing risky software.

 

Other platforms providing related functionality are frequently referred to as User Behaviour Analytics (UBA) platforms.

DT047Agent Capable of User Behaviour Analytics

An agent capable of User Behaviour Analytics (UBA) is a software agent installed on organizational endpoints (such as laptops). Typically, User Activity Monitoring agents are only deployed on endpoints where a human user is expected to conduct the activity.

 

The User Behaviour Analytics agent will typically record Operating System, application, and network activity occurring on an endpoint, focusing on activity that is or can be conducted by a human user. Typically, User Behaviour Analytics platforms operate in an agent/server model where activity logs are sent to a server for automatic analysis. In the case of User Behaviour Analytics, this analysis will typically be conducted against a baseline that has previously been established.

 

A User Behaviour Analytic platform will typically conduct a period of ‘baselining’ when the platform is first installed. This baselining period establishes the normal behavior parameters for an organization’s users, which are used to train a Machine Learning (ML) model. This ML model can then be later used to automatically identify activity that is predicted to be an anomaly, which is hoped to surface user behavior that is undesirable, risky, or malicious.

 

Other platforms providing related functionality are frequently referred to as User Activity Monitoring (UAM) platforms.

DT019Chrome Browser History

Google's Chrome browser stores the history of accessed websites and files downloaded.

 

On Windows, this information is stored in the following location:

C:/Users/<Username>/AppData/Local/Google/Chrome/User Data/Default/

On macOS:

/Users/<Username>/Library/Application Support/Google/Chrome/Default/

On Linux:

/home/<Username>/.config/google-chrome/Default/

 

Where /Default/ is referenced in the paths above, this is the default profile for Chrome, and can be replaced if a custom profile is used. In this location one database file is relevant, history.sqlite.
 

This database file can be opened in software such as DB Browser For SQLite. The ‘downloads’ and ‘urls’ tables are of immediate interest to understand recent activity within Chrome.

DT018Edge Browser History

Microsoft's Edge browser stores the history of accessed websites and files downloaded.

 

On Windows, this information is stored in the following location:

C:\Users\<Username>\AppData\Local\Microsoft\Edge\User Data\Default\

On macOS:

/Users/<Username>/Library/Application Support/Microsoft Edge/Default/

On Linux:

/home/<Username>/.config/microsoft-edge/Default/

 

Where /Default/ is referenced in the paths above, this is the default profile for Edge, and can be replaced if a custom profile is used. In this location one database file is relevant, history.sqlite.
 

This database file can be opened in software such as DB Browser For SQLite. The ‘downloads’ and ‘urls’ tables are of immediate interest to understand recent activity within Chrome.

DT017Firefox Browser History

Mozilla's Firefox browser stores the history of accessed websites.

 

On Windows, this information is stored in the following location:

C:\Users\<Username>\AppData\Roaming\Mozilla\Firefox\Profiles\<Profile Name>\

On macOS:

/Users/<Username>/Library/Application Support/Firefox/Profiles/<Profile Name>/

On Linux:

/home/<Username>/.mozilla/firefox/<Profile Name>/

 

In this location two database files are relevant, places.sqlite (browser history and bookmarks) and favicons.sqlite (favicons for visited websites and bookmarks).
 

These database files can be opened in software such as DB Browser For SQLite.

DT098NetFlow Analysis

Analyze network flow data (NetFlow) to identify unusual communication patterns and potential tunneling activities. Flow data offers insights into the volume, direction, and nature of traffic.

 

NetFlow, a protocol developed by Cisco, captures and records metadata about network flows—such as source and destination IP addresses, ports, and the amount of data transferred.

 

Various network appliances support NetFlow, including Next-Generation Firewalls (NGFWs), network routers and switches, and dedicated NetFlow collectors.

DT102User and Entity Behavior Analytics (UEBA)

Deploy User and Entity Behavior Analytics (UEBA) solutions designed for cloud environments to monitor and analyze the behavior of users, applications, network devices, servers, and other non-human resources. UEBA systems track normal behavior patterns and detect anomalies that could indicate potential insider events. For instance, they can identify when a user or entity is downloading unusually large volumes of data, accessing an excessive number of resources, or engaging in data transfers that deviate from their usual behavior.

DT101User Behavior Analytics (UBA)

Implement User Behavior Analytics (UBA) tools to continuously monitor and analyze user (human) activities, detecting anomalies that may signal security risks. UBA can track and flag unusual behavior, such as excessive data downloads, accessing a higher-than-usual number of resources, or large-scale transfers inconsistent with a user’s typical patterns. UBA can also provide real-time alerts when users engage in behavior that deviates from established baselines, such as accessing sensitive data during off-hours or from unfamiliar locations. By identifying such anomalies, UBA enhances the detection of insider events.