Infringement
Account Sharing
Data Loss
Denial of Service
Disruption of Business Operations
Excessive Personal Use
Exfiltration via Email
Exfiltration via Media Capture
Exfiltration via Messaging Applications
Exfiltration via Other Network Medium
Exfiltration via Physical Medium
- Exfiltration via Bring Your Own Device (BYOD)
- Exfiltration via Disk Media
- Exfiltration via Floppy Disk
- Exfiltration via New Internal Drive
- Exfiltration via Physical Access to System Drive
- Exfiltration via Physical Documents
- Exfiltration via Target Disk Mode
- Exfiltration via USB Mass Storage Device
- Exfiltration via USB to Mobile Device
- Exfiltration via USB to USB Data Transfer
Exfiltration via Screen Sharing
Exfiltration via Web Service
Harassment and Discrimination
Inappropriate Web Browsing
Installing Malicious Software
Installing Unapproved Software
Misappropriation of Funds
Non-Corporate Device
Providing Access to a Unauthorized Third Party
Public Statements Resulting in Brand Damage
Regulatory Non-Compliance
Sharing on AI Chatbot Platforms
Theft
Unauthorized Changes to IT Systems
Unauthorized Printing of Documents
Unauthorized VPN Client
Unlawfully Accessing Copyrighted Material
- ID: IF027
- Created: 01st October 2025
- Updated: 01st October 2025
- Platforms: WindowsLinuxMacOSiOSAndroidAmazon Web Services (AWS)Microsoft AzureGoogle Cloud Platform (GCP)Oracle Cloud Infrastructure (OCI)
- Contributor: The ITM Team
Installing Malicious Software
The subject deliberately or inadvertently introduces malicious software (commonly referred to as malware) into the organization’s environment. This may occur via manual execution, automated dropper delivery, browser‑based compromise, USB usage, or sideloading through legitimate processes. Malicious software includes trojans, keyloggers, ransomware, credential stealers, remote access tools (RATs), persistence frameworks, or other payloads designed to cause harm, exfiltrate data, degrade systems, or maintain unauthorized control.
Installation of malicious software represents a high-severity infringement, regardless of whether the subject's intent was deliberate or negligent. In some cases, malware introduction is the culmination of prior behavioral drift (e.g. installing unapproved tools or disabling security controls), while in others it may signal malicious preparation or active compromise.
This Section is distinct from general “Installing Unapproved Software”, which covers non‑malicious or policy-violating tools. Here, the software itself is malicious in purpose or impact, even if delivered under benign pretenses.
Subsections (5)
| ID | Name | Description |
|---|---|---|
| IF027.005 | Destructive Malware Deployment | The subject deploys destructive malware; software designed to irreversibly damage systems, erase data, or disrupt operational availability. Unlike ransomware, which encrypts files to extort payment, destructive malware is deployed with the explicit intent to delete, corrupt, or disable systems and assets without recovery. Its objective is disruption or sabotage, not necessarily for direct financial gain.
This behavior may include:
Insiders may deploy destructive malware as an act of retaliation (e.g. prior to departure), sabotage (e.g. to disrupt an investigation or competitor), or under coercion. Detonation may be manual or scheduled, and in some cases the malware is disguised as routine tooling to delay detection.
Destructive deployment is high-severity and often coincides with forensic tampering or precursor access based infringements (e.g. file enumeration or backup deletion). |
| IF027.001 | Infostealer Deployment | The subject deploys credential-harvesting malware (commonly referred to as an infostealer) to extract sensitive authentication material or session artifacts from systems under their control. These payloads are typically configured to capture data from browser credential stores (e.g.,
Infostealers may be executed directly via compiled binaries, staged through malicious document macros, or loaded reflectively into memory using PowerShell, .NET assemblies, or process hollowing techniques. Some variants are fileless and reside entirely in memory, while others create persistence via registry keys (e.g.,
While often associated with external threat actors, insider deployment of infostealers allows subjects to bypass authentication safeguards, impersonate peers, or exfiltrate internal tokens for later use or sale. In cases where data is not immediately exfiltrated, local staging (e.g., in |
| IF027.003 | Keylogger Deployment | The subject deploys software designed to record keystrokes entered on an endpoint to capture credentials, sensitive communications, internal documentation, or intellectual property. Keyloggers may be introduced as standalone binaries, embedded within otherwise legitimate tools, or configured through dual-use frameworks (e.g. C++ dropper with keylogging module). In insider scenarios, the deployment is typically local and deliberate, leveraging the subject’s physical access or assigned privileges to bypass existing controls.
Keyloggers operate in one of several modes:
Captured data is typically stored in encrypted local files (e.g. |
| IF027.002 | Ransomware Deployment | The subject deploys ransomware within the organization’s environment, resulting in the encryption, locking, or destructive alteration of organizational data, systems, or backups. Ransomware used by insiders may be obtained from public repositories, affiliate programs (e.g. RaaS platforms), or compiled independently using commodity builder kits. Unlike external actors who rely on phishing or remote exploitation, insiders often bypass perimeter controls by detonating ransomware from within trusted systems using local access.
Ransomware payloads are typically compiled as executables, occasionally obfuscated using packers or crypters to evade detection. Execution may be initiated via command-line, scheduled task, script wrapper, or automated loader. Encryption routines often target common file extensions recursively across accessible volumes, mapped drives, and cloud sync folders. In advanced deployments, the subject may disable volume shadow copies (vssadmin delete shadows) or stop backup agents (net stop) prior to detonation to increase impact.
In some insider scenarios, ransomware is executed selectively: targeting specific departments, shares, or systems, rather than broad detonation. This behavior may indicate intent to send a message, sabotage selectively, or avoid attribution. Payment demands may be issued internally, externally, or omitted entirely if disruption is the primary motive. |
| IF027.004 | Remote Access Tool (RAT) Deployment | The subject deploys a Remote Access Tool (RAT): a software implant that provides covert, persistent remote control of an endpoint or server—enabling continued unauthorized access, monitoring, or post-employment re-entry. Unlike sanctioned remote administration platforms, RATs are deployed without organizational oversight and are often configured to obfuscate their presence, evade detection, or blend into legitimate activity.
RATs deployed by insiders may be off-the-shelf tools (e.g. njRAT, Quasar, Remcos), lightly modified open-source frameworks (e.g. Havoc, Pupy), or commercial-grade products repurposed for unsanctioned use (e.g. AnyDesk, TeamViewer in stealth mode).
Functionality typically includes:
Deployment methods include manual installation, script-wrapped droppers, DLL side-loading, or execution via LOLBins ( |